Rituximab in Indolent Lymphomas

Tarek Sousou and Jonathan Friedberg

Indolent non-Hodgkin lymphoma (NHL) comprises a group of incurable, generally slow-growing lymphomas highly responsive to initial therapy, with a relapsing and progressive course. Rituximab, an anti-CD20 antibody, has had a large impact on the treatment of indolent NHL. Its effectiveness as a single agent and in conjunction with known chemotherapy regimens has made it a standard of care in the treatment of NHL. Analysis of data obtained from NHL clinical trials, as well as data from the National Cancer Institute, indicate that the overall survival (OS) of patients with indolent NHL has improved since the discovery of rituximab. Given its effectiveness and tolerability, rituximab is currently being investigated as a maintenance agent with encouraging results. This review summarizes several landmark trials utilizing rituximab as a single agent and in combination with chemotherapy for treatment of NHL. In addition, a review of the studied rituximab maintenance dosing schedules and its impact on NHL will be presented. Overall, rituximab has changed the landscape for treatment of indolent NHL; however, additional research is necessary to identify the optimal dosing schedule, as well as patients most likely to respond to prolonged rituximab therapy. Semin Hematol 47:133–142. © 2010 Elsevier Inc. All rights reserved.

FOLLICULAR LYMPHOMA

Rituximab Monotherapy

The initial trials investigating rituximab for the treatment of FL used the drug as a single agent. In a pivotal trial conducted by McLaughlin et al., 166 patients with heavily treated relapsed low-grade lymphoma, including 136 with FL, were given rituximab 375 mg/m² weekly for four doses. Of the patients enrolled, 48% responded, with a median time to progression (TTP) of 13.0 months among responders. Toxicity was mild and greatest during the first infusion without development of treatment-related cytopenias. Compared to single-agent cytotoxic therapy, single-agent rituximab was better tolerated and had similar efficacy.

Rituximab monotherapy has significant clinical activity in previously untreated patients as well. In a trial of 50 patients with newly diagnosed stage II/III/IV FL, the subjects received rituximab 375 mg/m² weekly for four doses. Patients were required to have a low tumor burden, defined as an absence of bulky lymphadenopathy, B symptoms, significant splenomegaly, and normal serum lactate dehydrogenase. A response rate of 73% was observed 4 weeks following completion of therapy. Polymerase chain reaction (PCR) analysis of BCL-2 rearrangement was performed pre- and post-therapy as well. BCL-2 rearrangement was performed pre- and post-therapy as well. Long-term follow-up revealed a median progression-free survival (PFS) of 37 months for patients who became BCL-2-negative following therapy as compared to 12 months for those who remained BCL-2-positive, suggesting that patients with a mole-
cular response to rituximab have a more indolent course.

Rituximab monotherapy has also been evaluated in combination with other forms of immunotherapy. Using patient-specific B-cell immunoglobulin idiotypes, a therapeutic vaccine can be created which in theory can produce a durable clinical response. This was tested in a randomized clinical trial of 364 patients with FL, the majority of which were treatment-naive. All patients were treated with rituximab 375 mg/m² weekly for 4 weeks. Those with an objective response were then randomized to receive a vaccine or placebo. Treatment-naive patients who were randomized to receive a vaccine had a TTP of 11.9 months as compared to 17.2 months in the placebo arm (P = .258).14 Patients with relapsed disease had a TTP of 6.0 months in the vaccine arm as compared to 11.2 months for the placebo arm (P = .004).14 The authors concluded that the difference in TTP among patients with relapsed disease is related to an imbalance in Follicular Lymphoma International Prognostic Index (FLIPI) risk scores among both treatment arms. While a negative vaccine effect cannot be excluded, when adjusting for FLIPI risk score, there was no significant difference in TTP for those with relapsed disease. Although addition of a patient-specific vaccine did not improve TTP, results of this trial highlight the effectiveness of single-agent rituximab in FL and support the results seen in the aforementioned trials.

Single-Agent Rituximab Maintenance

The concept of maintenance chemotherapy is a recurrent theme in oncology that dates back decades from experience in the curability of acute lymphoblastic leukemia in children. Several studies in indolent lymphoma have attempted to improve the OS and PFS in NHL by the use of interferon, chlorambucil, and multi-agent chemotherapy with mixed results and a high incidence of adverse effects that limited patient adherence.15-18 To date, rituximab is the first non-chemotherapy drug that is highly effective and without treatment-associated cytopenias or severe cumulative toxicity.19,20 The advent of a well-tolerated, effective drug with a favorable pharmacokinetic profile has led to a resurgence in the study of maintenance therapy (Table 1).

The first study of rituximab maintenance by Hainsworth et al21 was a phase II trial to assess response duration with an extended rituximab schedule. Sixty-two patients (38 with FL, 24 with chronic lymphocytic leukemia [CLL]) with stage II/III/IV disease were enrolled. The authors also accepted patients with stage I/II disease who had relapsed following prior radiation therapy; however, patients with prior chemotherapy were excluded. Enrolled patients received rituximab 375 mg/m² weekly for a total of 4 weeks. Disease response was assessed 2 weeks following induction and patients with an objective response or stable disease received rituximab 375 mg/m² weekly for 4 weeks every 6 months for 24 months.

The addition of a rituximab maintenance schedule led to an improved overall response rate (ORR) such that with continued therapy, 16 of 27 patients (59%) with stable disease achieved an objective response.21 Median PFS following the addition of prolonged rituximab dosing was 34 months. It is important to note that this analysis contains patients with CLL; however, ORR and PFS are not significantly different across NHL subtypes.21 Prolonged rituximab therapy was well tolerated, with few grade 3 or 4 adverse events.

Although Hainsworth et al demonstrated an improved ORR and PFS with an extended rituximab schedule, it is unknown whether maintenance therapy is more effective than re-treatment at the time of progression. This was addressed initially in a randomized phase II study in which 90 patients (62 with FL) were
given rituximab 375 mg/m² weekly for a total of four doses. Those with an objective response were randomized to maintenance rituximab as in the trial by Hainsworth et al.21 or to rituximab re-treatment at time of progression. For patients with FL, PFS with maintenance rituximab was 31 months versus 13 months with rituximab re-treatment (Figure 2).22 However, duration of response was similar between both study arms (31 v 35 months for maintenance and re-treatment, respectively) (Figure 3). Moreover, 3-year survival was not significantly improved in the maintenance arm as compared to the re-treatment arm (72% v 68%, respectively). The recently completed phase III Rituximab Extended Schedule or Retreatment Trial (RESORT) is hoped to definitively address the benefit of maintenance rituximab as compared to re-treatment at the time of progression.

A similar trial of prolonged rituximab therapy by Ghielmini et al.23 was performed using a different treatment schedule based on pharmacokinetic data. The goal of this schedule was to maintain a mean rituximab drug level greater than 25.4 μg/mL, a level which in prior studies was observed in responding patients.24 In this study, 202 patients with stage I/II/III FL who have not received prior antibody therapy were enrolled to receive rituximab 375 mg/m² weekly for 4 weeks. Eight weeks following induction therapy, those with an objective response or stable disease were randomized to receive rituximab 375 mg/m² every 2 months for four doses or observation.

<table>
<thead>
<tr>
<th>First Author, Year</th>
<th>No. of Patients</th>
<th>Induction Regimen</th>
<th>Maintenance Schedule</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hainsworth, 200221</td>
<td>62/38</td>
<td>R every wk × 4</td>
<td>Weekly × 4 every 6 mo</td>
<td>ORR: 76% PFS: 34 mo</td>
</tr>
<tr>
<td>Ghielmini, 200423</td>
<td>202/202</td>
<td>R every wk × 4</td>
<td>Every 2 mo × 4 v observation</td>
<td>ORR: 75 v 77% EFS: 23.2 v 11.8 mo DR: 36 v 16 mo</td>
</tr>
<tr>
<td>Van Oers, 200643</td>
<td>474/474</td>
<td>R-CHOP v CHOP × 6</td>
<td>Every 3 mo × 24 mo v observation</td>
<td>CR: 29 v 16%* PFS: 3.7 v 1.3 yr* 5 yr OS: 74 v 64%*†</td>
</tr>
<tr>
<td>Hochster, 200945</td>
<td>164/109</td>
<td>CVP × 6–8</td>
<td>Weekly × 4 every 6 mo</td>
<td>PFS: 4.3 v 1.3 yr 3-yr OS: 91 v 86%†</td>
</tr>
</tbody>
</table>

Abbreviations: ORR, overall response rate; PFS, progression-free survival; OS, overall survival; TTF, time to treatment failure; DR, duration of response; EFS, event-free survival; R, rituximab; CHOP, cyclophosphamide, doxorubicin, vincristine, prednisone; CVP, cyclophosphamide, vincristine, prednisone.

*Long-term data.
†Not significant.

Figure 2. Progression-free survival in those randomized to maintenance rituximab versus re-treatment at time of progression. Reprinted with permission.22 © 2005 American Society of Clinical Oncology. All rights reserved.
Following induction therapy, the response rate was 52% with no significant difference between the study arms. However, the response rate of decline following induction therapy was significantly less pronounced in those randomized to rituximab maintenance 12 months following randomization. Furthermore, patients who achieved a complete response (CR) following induction therapy remained in CR for a greater period of time if randomized to rituximab maintenance (36 vs 16 months). Event-free survival (EFS) also improved with the addition of a prolonged rituximab dosing schedule. This improvement was greatest in chemotherapy-naive patients (36 vs 19 months, \(P = .009 \)) and responders (36 vs 16 months, \(P = .004 \)) as compared to those randomized to observation.

As in their initial report, the extended rituximab dosing schedule employed by Ghielmini and colleagues did not result in improved EFS in previously treated patients. Subsequent long term follow-up data in abstract form revealed a 5 year EFS of 26% for those randomized to prolonged rituximab dosing as opposed to 10% in the observation arm, independent of prior therapy. Whereas initial results indicated that chemotherapy-naive patients had an improved EFS as compared to pretreated patients, long-term follow-up data do not support this contention. It is unknown what characteristics predispose a patient to a prolonged EFS, thus highlighting the need for continued research in extended rituximab dosing. This is currently underway in a randomized study of rituximab maintenance for 2 years versus 5 years. Thus far, data presented at the 2009 American Society of Clinical Oncology (ASCO) annual meeting did not reveal any safety concerns associated with rituximab maintenance beyond 2 years.

Given the number of available treatment options for FL, it is important to identify patients in whom single-agent therapy should be considered. In patients with relapsed or refractory FL, single-agent rituximab therapy should be considered when other options cannot be tolerated. Unfortunately, the optimal dosing schedule for single-agent therapy remains unknown. Clinical studies are underway to ascertain the optimal dosing schedule as the relapsing nature of indolent lymphoma makes rituximab resistance a valid concern. Although rituximab resistance has been demonstrated in in vitro models, rituximab re-treatment has been evaluated in clinical trials without any significant loss of treatment effect.

Rituximab Combined With Chemotherapy

Following the effectiveness of rituximab as a single-agent treatment, rituximab was added to frontline combination chemotherapy in an attempt to improve long-term outcome. Encouraging results from a phase II study of rituximab combined with cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) prompted five pivotal trials to examine the benefit of adding rituximab to chemotherapy regimens commonly used to treat FL. One such trial was a phase III trial that compared R-CHOP to CHOP alone. In this multicenter prospective randomized trial, patients with symptomatic, previously untreated, advanced-stage FL, grades I and II, were enrolled. Participants were randomized to receive either CHOP or R-CHOP for a total of six to eight cycles. ORRs were 96% for R-CHOP versus 90% for CHOP (\(P = .011 \)). R-CHOP was associated with a significantly improved time to treatment failure (TTF) and a longer duration of response.

Median TTF and response duration were achieved in the CHOP study arm but not in the R-CHOP arm. Therefore, neither TTF nor response duration could be accurately established for the R-CHOP arm in the predetermined follow-up period of this study. Treatment-related adverse effects were similar among both arms with the exception of increased neutropenia in those receiving R-CHOP. However, this did not lead to an increase in neutropenic infections. Infusion-related
adverse effects were mild and subsided by the second infusion.

Efforts at obtaining accurate TTP and duration of response following R-CHOP have led to extended follow-up periods. One such follow-up of 9 years was conducted following completion of R-CHOP for FL as part of a phase II trial of R-CHOP for indolent NHL. Analysis of the 38 patients with advanced-stage FL who received six cycles of R-CHOP revealed a median TTP of 82.3 months with a median duration of response of 83.5 months.30

In addition to combining rituximab to CHOP chemotherapy, rituximab was also added to another widely used chemotherapy regimen consisting of cyclophosphamide, vincristine, and prednisone (CVP). In this multicenter randomized phase III trial, patients with symptomatic, previously untreated, advanced-stage FL grades I to III were randomized to receive R-CVP or CVP (dose of cyclophosphamide only 750 mg/m²) for a maximum of eight cycles. The response rate for R-CVP was 81% as compared to 57% in the CVP arm (P < .0001) and treatment with R-CVP significantly improved TTF by 20 months (27 months v 7 months in R-CVP and CVP arms, respectively, P < .0001).6 Response duration was enhanced with the addition of rituximab: 35 months versus 14 months in the CVP-only group.6 The addition of rituximab was well tolerated, with a small number of grade 3 or 4 rituximab-related reactions.

In vitro studies of commonly used chemotherapy agents revealed synergism with the addition of rituximab to either prednisone or mitoxantrone.31,32 This led to the evaluation of mitoxantrone, chlorambucil, and prednisone with rituximab (R-MCP). In a study by Herold et al.,33 358 previously untreated, symptomatic patients with indolent NHL (201 with FL) were randomized to R-MCP or MCP for a maximum of eight cycles. At the completion of therapy, the ORR for those randomized to R-MCP was 92% as compared to 75% in the MCP arm (P = .0009). Further analysis revealed that the number of those in CR was twice as great in the R-MCP arm as compared to MCP (P = .0004). PFS was not reached in the R-MCP arm as compared to 28.8 months in those randomized to MCP. Although the median OS was not reached in either study arm, 4-year survival rates favored R-MCP (87% v 74% for R-MCP v MCP, respectively, P = .0096). Adverse events were similar among both study arms with the exception of an increase in grade 3 or 4 leukopenia observed in the R-MCP study arm; however, this did not lead to an increase in infections.

As there is no consensus in regards to optimal first-line therapy for FL, several other regimens have been utilized to a lesser extent in the treatment of FL.7 One such regimen involves the use of fludarabine and rituximab (FR). Based on in vitro studies suggesting synergism of this combination and separate mechanisms of action, FR combination therapy was studied in indolent NHL. Forty patients, 31 with histologically confirmed FL, received FR for a total of six cycles. Previously treated patients were enrolled and comprised 33% of the study population. The ORR following FR was 90%
with no significant difference in response according to prior treatment.35 Despite a median follow-up period of 44 months, response duration, OS, and TTP could not be assessed. Grade 3 or 4 neutropenia was common among patients but reversible with granulocyte colony-stimulating factor (G-CSF) support. Typical rituximab-associated infusion reactions were observed with initial doses as described in previous trials of rituximab.

Treatment of previously treated FL patients can be challenging as there are cumulative dose limitations and adverse effects related to chemotherapy. For patients previously treated with CHOP or CHOP-like regimens, fludarabine-based regimens can be used. The addition of rituximab to a fludarabine-based regimen was studied by Forstpointner et al,36 who randomized 147 previously treated patients (72 with FL) to receive four cycles of fludarabine, cyclophosphamide, and mitoxantrone (FCM) with or without rituximab (R-FCM). ORR in FL patients randomized to R-FCM was 94% and consisted of 40% CRs and 54% partial responses (PRs). Those randomized to FCM experienced an ORR of 70% with 23% CRs and 47% PRs ($P = .011$). R-FCM was superior to FCM irrespective of the number of prior therapies. Median PFS was not reached for those randomized to R-FCM as opposed to 21 months in the FCM study arm. OS was not reached for both arms during the study observation period; however, 2-year estimated median OS was 90% for those randomized to R-FCM and 70% for those in the FCM arm ($P = .0943$). Perhaps with further observation one would expect this difference to become significant given the significant difference in PFS.

The addition of rituximab to chemotherapy has enhanced response rates and PFS in all of the aforementioned trials. Efforts at long-term survival analysis have been attempted and although an improved survival is suggested, it is not clearly definitive. Furthermore, sample sizes are small and long-term follow-up data do not apply for all chemotherapy regimens used in indolent NHL. Data from a recent meta-analysis of immunotherapy evaluating 1,943 patients revealed a pooled hazard ratio for death of 0.65 (95% confidence interval [CI], 0.54 - 0.78) in favor of immunochemotherapy.37 When stratified for the 1,480 patients with FL, the pooled hazard ratio for mortality was 0.63 (95% CI, 0.51 - 0.79) in favor of immunotherapy. Based on this hazard ratio and an assumed 2-year OS of 90%, the number needed to treat with immunochemotherapy to prevent one death in 2 years is 28 patients.

Rituximab has greatly changed the manner in which indolent NHL is treated. Its application as a single agent has led to an improved PFS with minimal toxicity and it has emerged as first-line therapy for those unable to tolerate aggressive measures. The addition of rituximab to chemotherapy has had a clear impact on response rate, PFS, and response duration with a suggestion towards improved OS irrespective of the chemotherapy regimen to which it is coupled. The improvement in response rate, PFS, and duration of response in patients treated with immunochemotherapy makes rituximab the standard of care for FL treatment.

OTHER INDOLENT LYMPHOMAS

Lymphoplasmacytic lymphoma (LPL or Waldenström macroglobulinemia) is an uncommon indolent NHL and is thus underrepresented in the literature. Use of rituximab in this disease is particularly important as it does not promote cytopenias associated with LPL. This was evaluated by the German Low-Grade Lymphoma Study Group (GLSG) in a phase III trial of 70 previously untreated patients with advanced LPL randomized to R-CHOP versus CHOP. The addition of rituximab to CHOP resulted in an ORR of 94% versus 67% and a TTF of 63 months versus 22 months.38 Treatment was well tolerated without any difference in side effects among study treatment arms.

The combination of rituximab and fludarabine (FR) was also evaluated in a recent phase II trial for treatment of LPL.39 Forty-three patients with FR-naive LPL who had received at most two prior therapies were given eight infusions of rituximab along with six cycles of fludarabine. The combination of FR was effective in reducing IgM levels, as well as bone marrow involvement, with an ORR of 95.3%. Response rates were not significantly different for previously treated versus previously untreated patients. However, TTP was significantly greater in treatment-naive patients, 77.6 months, compared to previously treated patients, 51.2 months. Neutropenia was common, necessitating fludarabine dose reduction. IgM flare, a phenomenon by which IgM levels increase following initial dosing of rituximab, was seen in this study, although it was uncommon. Data from similar studies of FR in LPL indicated that concurrent immunochemotherapy rather than sequential dosing of FR decreases the potential for rituximab-associated IgM flare.40

Similarly, the uncommon nature of marginal zone lymphoma (MZL) has limited the number of dedicated studies on the optimal therapeutic approach. Historically, this subtype of indolent NHL has been studied in conjunction with other more prevalent indolent lymphomas. As a result, treatment of MZL is approached in a similar fashion to treatment of FL with similar results for rituximab monotherapy and rituximab-based therapies.41,42

MAINTENANCE RITUXIMAB THERAPY FOLLOWING CHEMOTHERAPY

Prolonged rituximab dosing has also been studied in relapsed FL by Van Oers et al.43 In this study, 465 previously treated patients with advanced-stage FL were randomized to R-CHOP versus CHOP for a total of
six cycles. Those with an objective response were randomized to rituximab 375 mg/m² every 3 months for a total of 24 months or observation. Data in abstract form from long-term follow-up indicate that patients randomized to prolonged rituximab therapy had a PFS of 3.7 years as compared to 1.3 years in the observation arm. This improvement in PFS was maintained regardless of whether patients received CHOP or R-CHOP during induction. Three-year OS was also improved by the addition of prolonged rituximab therapy as initially reported (85.1% vs 77.1%). However, data from long-term follow-up revealed a trend towards improved OS with a 5-year OS of 74% for prolonged rituximab dosing versus 64% for observation (P = .07). One possible explanation for a nonsignificant increase in OS despite a significant increase in PFS is that several patients from both study arms received rituximab monotherapy following disease progression. It should be noted this rituximab-naïve patient population is different from most patients in the United States, and it is inappropriate to extrapolate these results to patients relapsing after rituximab-containing chemotherapy regimens.

The role of maintenance rituximab following initial chemotherapy for treatment of naïve patients is unknown. A recent phase III study by Hochster et al evaluated the impact of maintenance rituximab in the upfront setting following non–rituximab-containing chemotherapy. In this study, 109 patients with previously untreated FL were given CVP. Those with an objective response or stable disease were then randomized to rituximab 375 mg/m² weekly for four doses every 6 months for 24 months or observation. Those randomized to maintenance rituximab experienced an improved PFS as compared to the observation arm (4.3 vs 1.3 years). However, overall survival was not improved by the addition of maintenance rituximab, but a subset analysis indicated that patients with a high tumor burden had an improved OS with maintenance rituximab.

Unfortunately, this study did not use rituximab upfront with CVP as is common practice today. At the time this study was conducted, rituximab was not used with chemotherapy in the upfront setting. Since rituximab-based chemotherapy is the standard of care for treatment of FL, it is unclear how applicable this study can be given the lack of upfront rituximab. In unusual circumstances where non–rituximab-containing regimens have been used, rituximab maintenance should be considered in the relapsed setting if other treatment strategies cannot be employed.

The concept of maintenance rituximab is an appealing treatment option for FL given its efficacy, tolerability, and ease of administration. The ability to extend OS has not been proven in long-term follow-up, although data from the Van Oers study indicates that rituximab-naïve patients have an improved PFS with the addition of maintenance rituximab. Perhaps additional follow-up is necessary in order to demonstrate a survival benefit. However, if a survival benefit cannot be established in the relapsed setting, it is difficult to expect that an effect will be seen in previously untreated patients, where the TTF is much longer.

It is hoped that the Primary Rituximab and Maintenance (PRIMA) study will address the question of whether to incorporate maintenance rituximab following upfront rituximab–chemotherapy in previously untreated FL. The largest FL trial of its kind, it has accrued more than 1,000 patients with previously untreated FL and randomized them to maintenance rituximab according to the Ghielmini schedule versus observation following rituximab–chemotherapy. Given its large sample size, this trial should be adequately powered to detect a survival difference. The preliminary results are expected soon.

FUTURE DIRECTIONS

Despite the successful improvement of disease-free intervals with the addition of rituximab maintenance, there are needed areas of further research. Several groups have attempted to improve efficacy of rituximab with immunostimulants to enhance antibody-dependent cellular cytotoxicity or complement-mediated cytotoxicity. Rituximab has been safely combined with interleukin-2, alpha interferon, and interleukin-12. We and others have studied rituximab in combination with TLR-9 agonists, which have pleiotropic immunostimulatory effects. In general, these single-arm trials have suggested enhanced PFS when rituximab is combined with immunostimulatory agents compared to historical controls of single-agent rituximab. However, randomized studies are required to definitively determine the effect of adding immunostimulants to rituximab, and whether these agents would have a role in combination with chemotherapy.

To date, there have been three published trials of rituximab maintenance, each with a different number of rituximab doses and different duration of therapy. However, all three have similar results, thus highlighting a lack of knowledge regarding the optimal rituximab dosing schedule. Long-term follow-up from the initial study conducted by Ghielmini et al suggests that the effects of rituximab can be long lasting in a certain percentage of patients; however, there is no method by which to identify these patients. Research on host-associated resistance mechanisms to rituximab has identified various polymorphisms of the FcγRIIIA receptor that affect response to rituximab-containing regimens in FL, but this has not been validated prospectively. Given the cost of rituximab maintenance and potential undetermined long-term risks, a greater emphasis on identification of potential responders, as well as
as an optimal dosing schedule and duration, is greatly needed.

In this issue of *Seminars in Hematology*, there is a chapter on novel anti-CD20 monoclonal antibodies (see van Meerten and Hagenbeek). Many of these antibodies have been engineered to have increased cytotoxicity compared with rituximab. Until superior activity is demonstrated in randomized clinical trials, we feel it is unlikely these antibodies will replace rituximab in the routine treatment of indolent lymphoma. Therefore, continued study of this most valuable therapeutic agent is warranted.

REFERENCES

50. Ansell SM, Witzig TE, Kurtin PJ, et al. Phase 1 study of interleukin-12 in combination with rituximab in patients...

